Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(12): 1422-1433, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703579

RESUMO

KRASG12C inhibitors, such as sotorasib and adagrasib, have revolutionized cancer treatment for patients with KRASG12C-mutant tumors. However, patients receiving these agents as monotherapy often develop drug resistance. To address this issue, we evaluated the combination of the PAK4 inhibitor KPT9274 and KRASG12C inhibitors in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We found that cancer cells resistant to KRASG12C inhibitor were sensitive to KPT9274-induced growth inhibition. Furthermore, KPT9274 synergized with sotorasib and adagrasib to inhibit the growth of KRASG12C-mutant cancer cells and reduce their clonogenic potential. Mechanistically, this combination suppressed cell growth signaling and downregulated cell-cycle markers. In a PDAC cell line-derived xenograft (CDX) model, the combination of a suboptimal dose of KPT9274 with sotorasib significantly reduced the tumor burden (P= 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model, in which KPT9274, given as maintenance therapy, prevented tumor relapse following the discontinuation of sotorasib treatment (P= 0.0001). Moreover, the combination of KPT9274 and sotorasib enhances survival. In conclusion, this is the first study to demonstrate that KRASG12C inhibitors can synergize with the PAK4 inhibitor KPT9274 and combining KRASG12C inhibitors with KPT9274 can lead to remarkably enhanced antitumor activity and survival benefits, providing a novel combination therapy for patients with cancer who do not respond or develop resistance to KRASG12C inhibitor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases Ativadas por p21/genética , Neoplasias Pancreáticas
2.
bioRxiv ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37034616

RESUMO

KRASG12C inhibitors have revolutionized the treatment landscape for cancer patients harboring the G12C mutant isoform of KRAS. With the recent FDA approval of sotorasib and adagrasib, patients now have access to more promising treatment options. However, patients who receive these agents as a monotherapy usually develop drug resistance. Thus, there is a need to develop logical combination strategies that can delay or prevent the onset of resistance and simultaneously enhance the antitumor effectiveness of the treatment regimen. In this study, we aimed at pharmacologically targeting PAK4 by KPT9274 in combination with KRASG12C inhibitors in KRASG12C mutant pancreatic ductal adenocarcinoma (PDAC) and nonâ€"small cell lung cancer (NSCLC) preclinical models. PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We assessed the cytotoxicity of PAK4 and KRASG12C inhibitors combination in KRASG12C mutant 2D and 3D cellular models. KPT9274 synergized with both sotorasib and adagrasib in inhibiting the growth of KRASG12C mutant cancer cells. The combination was able to reduce the clonogenic potential of KRASG12C mutant PDAC cells. We also evaluated the antitumor activity of the combination in a KRASG12C mutant PDAC cell line-derived xenograft (CDX) model. Oral administration of a sub-optimal dose of KPT9274 in combination with sotorasib (at one-fourth of MTD) demonstrated significant inhibition of the tumor burden ( p = 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model where KPT9274, acting as an adjuvant, prevented tumor relapse following the discontinuation of sotorasib treatment ( p = 0.0001). KPT9274 and sotorasib combination also resulted in enhanced survival. This is the first study showing that KRASG12C inhibitors can synergize with PAK4 inhibitor KPT9274 both in vitro and in vivo resulting in remarkably enhanced antitumor activity and survival outcomes. Significance: KRASG12C inhibitors demonstrate limited durable response in patients with KRASG12C mutations. In this study, combining PAK4 inhibitor KPT9274 with KRASG12C inhibitors has resulted in potent antitumor effects in preclinical cancer models of PDAC and NSCLC. Our results bring forward a novel combination therapy for cancer patients that do not respond or develop resistance to KRASG12C inhibitor treatment.

3.
Cancer Res Commun ; 2(5): 342-352, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35573474

RESUMO

The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. Significance: In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transporte Ativo do Núcleo Celular , Carioferinas , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais
5.
Cancer Metastasis Rev ; 41(2): 317-331, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366155

RESUMO

Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.


Assuntos
Microbiota , Neoplasias Pancreáticas , Humanos , Pâncreas , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...